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to go beyond and look at ‘‘property-action’’ networks instead. To this effect, a brain guided
framework for distributed property specific organization of sensorimotor knowledge for
humanoid iCub is presented. Two simple learning rules namely ‘elimination’ and ‘growth’ are
proposed to compare top down anticipation and bottom up real experience to abstract
underlying causal relations. An engaging scenario how the robot cumulatively learns and
abstracts causally dominant properties that influence motion of various objects when forces
are exerted on them is used to validate the neural architecture. The implicit advantage is that
such learnt *‘property-action’’ relations can be effortlessly generalized to a domain of objects
for which the robot need not have any past experience/learning but nevertheless share the
‘*property’’. Further, the study has relevance in both better understanding how common causal
relations can be cumulatively learnt, represented and exploited, to providing novel embodied
frameworks for analogical reasoning.
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wise unrealizable goals is a sign of cognition. Despite inces-
santly encountering novel exemplars of objects we have
never interacted with before we can often anticipate about
what can be done with them and even exploit them to
realize our goals. Based on her past experience of bending
flexible pipe cleaners about a year back, Betty the new
Caledonian crow quickly fashioned a hook out of a piece
of wire to pull her dinner basket trapped in a transparent
vertical tube (Weir, Chappell, & Kacelnik, 2002). Studies
from animal cognition (Visalberghi & Tomasello, 1997;
Whiten, McGuigan, Marshall-Pescini, & Hopper, 2009) indi-
cate that several other primates are able to flexibly reason
about physical causality, exploit inherent properties of
objects available in the environment: for example choosing
a tool of a right length to push out a trapped reward (among
others). How by cumulative and explorative interactions
with different objects in the world, task relevant physical
and causal relations are both abstracted and exploited flex-
ibly in novel contexts is a problem that presents challenges
both in terms of representation and learning. In this con-
text, cognitive robots offer a unique opportunity to reenact
the gradual process of cumulative learning and investigate
the underlying computational basis. The value is both intrin-
sic i.e. better understanding our own selves and extrinsic
i.e. creating a range of artifacts that can flexibly assist us
in the environments we inhabit and create.

Learning ‘object-action’ relations and using such knowl-
edge for prediction and planning is becoming an active topic
of study in embodied robotics with approaches ranging from
probabilistic Bayesian models, to neural associative
networks and symbolic formalisms (Kriiger et al., 2011;
Montesano, Lopes, Bernardino, & Santos-Victor, 2008;
Montesano, Lopes, Bernardino, & Santos-Victorm, 2007).
Despite intriguing attempts, both applicability and general-
ization of the methods to novel contexts and the necessity
to facilitate cumulative learning (like natural cognitive
agents) have been known bottlenecks. In parallel, emerging
results from functional imaging are beginning to provide
useful information as to how conceptual knowledge about
object concepts and causal relations is organized in the
brain (Bressler & Menon, 2010; Buckner, Andrews-Hanna,
& Schacter, 2008; Martin, 2007, 2009; Meyer & Damasio,
2009; Patterson, Nestor, & Rogers, 2007). The main findings
emerging from these results is that conceptual information
is grounded in a ‘‘distributed fashion’’ in ‘‘property spe-
cific’’ cortical networks (Martin, 2009; Patterson et al.,
2007) that directly support perception and action (and that
were active during learning). Same set of networks are
known to be active both during real perception/action,
imagination or lexical processing (Martin, 2007; Meyer &
Damasio, 2009). Further, there is a fine specialization of
areas representing conceptual information related to ani-
mate vs. inanimate objects as evident from functional imag-
ing and TMS studies on both normal subjects and semantic
dementia patients (Buckner et al., 2008; Patterson et al.,
2007). It is also now known that ‘‘retrieval’’ or reactivation
of the conceptual representation can be triggered based on
partial cues coming from ‘‘multiple modalities’’: for exam-
ple sound of a hammer retro activates its shape representa-
tion (Meyer & Damasio, 2009), presence of a real object
(banana) or a 2D picture of it can still activate the complete
network associated with the object (and that was active

during learning of it in the first place). These results provide
valuable insights to guide development of computational
frameworks for organizing information related to percep-
tion—action and foster learning of causal relations, impor-
tantly in an embodied and cumulative learning setup. The
present article is an ambitious adventure in this direction.

A Dbiologically inspired framework for distributed
property specific organization of sensorimotor knowledge
for humanoid iCub is presented with an emphasis on learning
‘‘property-action’’ relations. The implicit advantage is that
such learnt ‘‘property-action’’ relations can be effortlessly
generalized to a do-main of objects for which the robot
need not have any past experience/learning but neverthe-
less share the ‘‘property’’. An engaging scenario how the
robot cumulatively learns and abstracts causally dominant
properties that influence motion of various objects when
forces are exerted on them is used to validate the neural
architecture. It is known from studies on animal behavior
that different species have different levels of understanding
of the causality related to this task (Visalberghi &
Tomasello, 1997; Whiten et al., 2009). In addition to the
multiple utilities of the *‘push/pull’’ action itself in the con-
text of day to day interactions with objects, what makes it
interesting is the sheer range of physical concepts that have
to be “‘learnt’’ and ‘‘abstracted’’. For example, it has to be
learnt that contact is necessary to push, object properties
influence pushability (balls roll faster than cubes and it does
not matter what is the color of the ball or the cube), pushing
objects gives rise to path of motion in specific directions
(the inverse applies for goal directed pushing), pushing
can be used to support grasping, bring objects to proximity.
The requirement to capture/learn such a wide range of
physical concepts through cumulative ‘‘playful interac-
tions’’ of the robot with different objects makes this task
both interesting and challenging.

The rest of the article is organized as follows:
Section ‘Distributed ‘‘property specific’’ organization of
sensorimotor information and the basic Pushing forward/
inverse model’ describes the organization of sensorimotor
information in iCub taking guidance from emerging results
from neurosciences. How the basic Pushing forward/Inverse
model i.e. anticipating how objects move and inversely gen-
erating goal directed pushing actions is learnt is illustrated.
Section ‘Cumulatively abstracting ‘‘causal dominant proper-
ties’’ related to pushing’ introduces two learning rules
namely elimination and growth’ that augment the distrib-
uted property specific organization of sensorimotor
information to facilitate the robot to abstract properties
that are causally dominant through cumulative explorative
interactions. A discussion concludes.

Distributed ‘‘property specific’’ organization
of sensorimotor information and the basic
pushing forward/inverse model

Emerging trends from the fields of connectomics, functional
imaging studies in relation to organization of semantic and
episodic memory in the brain (Bressler & Menon, 2010;
Buckner et al., 2008; Martin, 2009; Patterson et al., 2007)
now provide numerous insights to guide development of
brain guided computational framework for organization
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Fig. 1 Left panel shows a block diagram of how sensorimotor information is organized. Results of perceptual analysis activate the
layer 1 neural maps organized in a property specific fashion ultimately leading to a distributed representation of the perceived
object in the connector hub (layer 2). An interesting aspect of such kind of organization is that as we move upwards in the hierarchy
information becomes more and more integrated and multimodal and as we move downwards information is more and more
differentiated to the level of perceived properties. The connectivity between hubs and property specific maps is essentially
bidirectional hence allowing information to move ‘‘top down, bottom up or in cross modal’’ fashion. The pushing sub-network,
connected to the object hub consists of two networks: one a growing SOM encoding average displacement of an object per unit force
exerted (averaged over several trials of interactions) and another representing distributed coding of direction. These networks
together enable learning and representing the forward/inverse model for pushing while the property specific organization facilitates
learning which properties are causally dominant. Right panel shows the robot interacting with different objects during the episodes

of cumulative learning.

and use of memory in cumulatively learning embodied
robots. Fig. 1 shows a block diagram of how sensorimotor
information is organized in the proposed computational
framework with the focus of the ‘‘Pushing’’ sub-network.
At the bottom is the Darwin” sensory layer that includes
the sensors, associated communication protocols and
algorithms to analyze properties of the objects mainly
color, shape and size (Cai, Werner, & Matasm, 2013). Word
information is an additional input coming from the teacher
either to issue user goals or interact with the robot. Results
of perceptual analysis activate various neural maps
organized in a property specific fashion ultimately leading
to a distributed representation of the perceived object in
the connector hub (layer 2). In this sense, a red cylinder
and red cube will have identical activity in the color map,
but different activity in the shape map, ultimately leading
to a distributed representation in the connector hub. How

" The acronym Darwin stands for the ongoing EU funded project
Dexterous Assembler Robot Working with embodied Intelligence
(www.darwin-project.eu).

these self-organizing maps are learnt is out of scope for
this article, but uses standard techniques (Fritzke, 1995;
Kohonen, 1995). Interested reader is referred to a recent
article (Mohan, Morasso, Sandini, & Kasderidis, 2013) that
goes into formal details of the algorithms with experimental
results.

An interesting aspect of such kind of organization is that
as we move upwards in the hierarchy information becomes
more and more integrated and multimodal and as we move
downwards information is more and more differentiated to
the level of perceived properties. The connectivity between
hubs and property specific maps is essentially bidirectional
hence allowing information to move ‘‘top down, bottom
up or in cross modal’’ fashion. For example, as illustrated
in Mohan et al. (2013), when issued a user goal to Grasp a
‘‘Red Container’’ (a new combination of known words
describing an object the robot has not encountered before),
bottom up activity in the word map can spread through the
provincial hub leading to anticipatory top down activations
in the neural maps processing color and shape information
(corresponding to what the robot anticipates the object
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i.e. the red container to be). If top down activation of the
property specific maps resonates with their bottom up acti-
vation (through perceptual stream) this is sufficient to lead
to the inference that the novel object being perceived is
most probably the one the user requested to grab (Mohan
et al., 2013). What is relevant as far as the present article
is concerned are mainly two things: (1) The bottom up pro-
cessing leads to a distributed representation of the per-
ceived objects (in relation to its perceptual properties
color, shape, size) in the object connector hub that identi-
fies the object (i.e. in other words coding for ‘what is it’).
(2) Due to reciprocal connectivity between the hubs and
property specific maps, it becomes possible to go beyond
‘‘object-action’’ and learn things at the level of ‘‘prop-
erty-action’’ instead.

Different objects move in different ways when force is
exerted on them, some do not move too. By interacting with
various objects, the goal of the robot is to learn a general
forward/inverse model for ‘pushing action’: i.e. being able
to predict how an object will move when pushed (forward
model) and being able to generate goal directed pushing
actions in order to displace an object to a desired location.
When presented with any ‘object’, different property
specific neural maps are activated bottom up leading to a
distributed representation of the concerned object in the
object connector hub. Since object properties influence
pushing, activity in the object connector hub influences
the pushing forward/inverse model and hence is
bidirectionally connected to it (connectivity learnt by expe-
rience). The push sub network is represented using two neu-
ral maps:

1. A growing SOM learning ‘‘average displacement of an
object per unit force’’ and

2. That represents a distributed coding of direction in which
the object is moving.

The former neural map is empty to start with and is grad-
ually grown as the robot interacts with different objects.
Note that ‘‘average displacement per unit force’’ basically
measures in abstract terms the ‘‘mobility’’ of the object
when a certain amount of force is exerted on it. Inversely,
this information allows the robot to predict how an object
will move when force is exerted on it (useful while generat-
ing goal directed pushing). For every object presented, the
robot is allowed to explore displacing it to a distance of
15cm (in eight different directions. Averaging the result
of this experience, the parameter P; (average displace-
ment/unit force) for the neuron *‘i’’ coding for a particular
object is estimated. Growth in this neural SOM only takes
place if there is a contradiction between ‘‘the robots antic-
ipation of how a novel object might move’’ and ‘‘how it
actually moves in reality’’. Cubes, cylinders and balls of dif-
ferent colors and sizes (some heavy ones), few MECCANO
blocks (from the MECCANO 2+ kit for 2 year olds) were pre-
sented gradually.

The inverse operation i.e. pushing an object to a desired
location can be achieved through the following 4 steps (that
depict how the learnt forward model (how something
moves) can be used to perform inverse operation (how the
object can be moved as desired):

1. Detect and localize the current position ‘X(x,y, z)’ of the
object and the target ‘Xt(xr,yr,z7)’ (Where the object
has to be displaced).

2. Compute the desired direction **6’’ to push using infor-
mation on X and Xy; This activates the neurons in the
motor map responsible for directional coding. Based on
the instantaneously computed direction, we also see
distributed activity the 8 neurons coding for different
directions.

3. Anticipate the average displacement of the object in the
desired direction for an incremental iteration where unit
force is applied on it (P;).

4, Iterate steps 1—3, to get a virtual trajectory in space.
The synthesized virtual trajectory can then be fed as a
moving point attractor to the iCub action generation sys-
tem (Mohan & Morasso, 2011) to compute the motor
commands for the body chain executing the goal direc-
ted pushing. The process (1—4) is like smooth sliding of
an object along a predicted trajectory created due to
past experience. Fig. 2 shows the virtual trajectories
(moving attractors) and real trajectories during goal
directed pushing of a red cuboid and a ball. Activity in
the neurons responsible for distributed coding of direc-
tion during the synthesis of the motor actions is shown
at the top. Note that while pushing a ball the end effec-
tor needs to be displaced just by a small amount along an
estimated virtual trajectory (green trajectory) like kick-
ing a football to the goal. Cubes move more uniformly
with the displacement of the end effector and have to
be pushed gradually to the destination. Note that, time
is also implicitly represented. This is because every
‘*dot’’ in the virtual trajectory represents iteration in
time: the virtual trajectory is very short while pushing
the ball, almost uniform while pushing the small cube
and longer when pushing the heavy/large objects.

Cumulatively abstracting ‘‘causal dominant
properties’’ related to pushing

The previous section described how the robot by interacting
with different objects can learn the Pushing forward inverse
model i.e. predicting how an object will move when force is
exerted on it or inversely generating goal directed pushing
actions to displace an object to a goal location. In this
section, we will present results on how the proposed bio
inspired framework for sensorimotor organization further
allows the robot to additionally learn and abstract ‘‘which
properties are causally dominant’’ for the task. To this
effect we introduce two simple learning rules that facilitate
abstraction of causally dominant properties by comparing
the present experience with a recalled past experience.
Let us consider that A property is the difference in activity
in a property specific map (Fig. 1) when activated bottom up
through sensory layer during present experience and when
activated top down from the pushing SOM while recalling
a past experience. Let A Contradiction be the difference
between the robots anticipation of how an object might
behave and the real observed behavior. Then the two
learning rules are as follows
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Fig. 2 Left panel shows the virtual trajectories (attractors) and real trajectories during goal directed pushing of a cube and ball

from the initial condition to the target. Activity in the neurons responsible for distributed coding of direction during the synthesis of
the motor actions is shown at the top. Note that while pushing a ball the end effector needs to be displaced just by a small amount
along an estimated virtual trajectory (green trajectory) like kicking a football to the goal. Cubes move more uniformly with the
displacement of the end effector and have to be pushed gradually to the destination. Right panel shows a snapshot of the iCub

engaging in goal directed pushing.

Elimination rule: If change in ‘‘property’’ does not
cause ‘‘contradiction’’ between anticipation and real
experience, then that property is not causally dominant.
The result is a drastic reduction in the connection
strength between associated maps (hence reducing the
capability of activating each other).

Growth rule: If change in ‘‘property’’ causes ‘‘contra-
diction’’ between anticipation and observed behavior,
then that property is causally dominant. Contradiction
implies that there is something new that has not been
learnt in the past episodes of experiences.

Two different scenarios are presented in the subsections
that exploit the elimination and growth rule to enable the
robot to abstract causally dominant properties by cumula-
tive interactions with objects.

Small cubes: learning that ‘‘color’’ of objects does
not affect the way they move

Fig. 3 shows the activations in the various neural maps when
the robot explores pushing cubes. The first 3 columns show
the activity in the color-word-shape maps. The fourth col-
umn shows the distributed activity in the object hub repre-
senting in a distributed manner ‘‘what the object is’’. In
episode 1, there is no anticipated activity in the pushing

SOM (since there are no connections between the Pushing
SOM and the connector hub because no experience has been
gained before and nothing is known about the behavior of
the cube). After experience of pushing red cube in different
directions, there is one neuron (winner) in the pushing SOM
that is coding the average displacement of the red cube
when pushed by the robot. For cubes this ratio is approxi-
mately 0.8, averaged over 10 trials of pushing. The connec-
tions between the active neurons in the ‘‘object hub’’
(column 4) and the winner in the pushing SOM are also built.
This is standard Hebbian learning with the effect that in
future if a “‘small red cube’’ is presented, the robot can
both anticipate how it will move and also generate goal
directed actions to push it to the desired location (based
on the steps outlined in the previous section). In the next
episode the robot is presented with a ‘‘small blue cube’’.
Bottom up activity form the sensory layer activates differ-
ent neural SOM’s (episode 2, column 1-3) which activate
the object hub (column 4). Because of episode 1, there
exists now some connectivity between the object hub and
the Pushing SOM, enabling the object hub to activate the
“‘only’’ existing winner in the pushing SOM (the robot does
not know anything about small blue cubes, but it knows
something about small red cubes). So it anticipates that
blue cubes should also behave the same way and this
indeed turns out to be the case from real experience. The
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Episode 1: Interacting with a small red cube
Word map Object Hub Push SOM Push SOM
observed

Anhclifed

Episode 2: Interacting with a small blue cube

Moving top down: Reconstructing the experience of episode 1 now from memory e

Color map Shape map

Assimilating experiences in episode 1and episode 2 using elimination rule

Fig. 3 Every row is an episode of interaction with some object and activity in various maps are plotted. As we move down, we also
move ahead in time (when either a new object is presented to play with) or assimilation of learnt knowledge takes place (using the
learning rules). In episode 1 (pushing a small red cube), there is no anticipatory activity in the Pushing SOM (as there is no knowledge
in the system). But after learning bottom up, a new neuron is grown in the Pushing SOM that codes for the behavior of red cubes.
Now in episode 2 when presented with a blue cube, we see anticipatory activity in the pushing SOM (it anticipates blue cubes will
also move like the red cubes, there is some similarity as seen in the activity of the property specific maps). The anticipation of the
robot correlates with what is experienced by direct interaction with the new object. Due to reciprocal connectivity between the
pushing SOM and the property specific maps, it becomes possible to move top down form the pushing SOM and reconstruct from
memory the activity in the property specific maps that were active when this experience was originally encoded. As seen in row 3,
the past experience of pushing the red cube is reconstructed successfully. Comparing row 2 (bottom up: present experience with the
blue cube) and the past experience with the red cube (reconstructed top down), it is easy to observe that elimination rule applies
(change in property not causing a contradiction in anticipation). What the robot abstracts is that color of objects do not affect their
mobility when forces are exerted on them (row 4). The Net effect of assimilation is that the connectivity of the Push SOM with the
color SOM is now reduced drastically and they no longer retroactivate each other. Row 4, shows the activity in different maps when
we move top down from the pushing SOM after elimination rule is applied. Note that the color map is no longer activated as the robot
has now learnt that color is a irrelevant property as far as how objects move when pushed. This is in fact equivalent to querying the
robot ‘‘which object moves like this’’ note that the word map generates linguistic outputs. Before assimilation the answer would
have been ‘‘small red cubes’’, after assimilation the answer is just ‘‘small cubes’’!

anticipation of the robot correlates with what is experi-
enced by direct interaction with the new object. Due to
reciprocal connectivity between the pushing SOM and the
property specific maps, it becomes possible to move top
down form the pushing SOM and reconstruct from memory
the activity in the property specific maps that were active
when this experience was originally encoded. As seen in
row 3, the past experience of pushing the red cube is recon-
structed successfully. Comparing row 2 (bottom up: present
experience with the blue cube) and the past experience
with the red cube (reconstructed top down), it is easy to

observe that elimination rule applies (change in property
not causing a contradiction in anticipation).

Small cylinders: learning that ‘‘Shape’’ is a
dominant property

In Section ‘Small cubes: learning that ‘‘color’’ of objects
does not affect the way they move’ the robot learnt colors
of objects do not causally affect their mobility when forces
are exerted on them. Now the robot is presented with a
small green cylinder. The loop form bottom up and top
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Episode 3: Interacting with cylinders

Color map

Shape map

Word map

Anticipated behaviour of the cylinder in the Push SOM does not resonate with real
observation, hence reconstructing top down the expereince that led to the incorrect
anticipation i.e episode 1 (interacting with cubes)

After Push SOM Growth and Assimilation of new knowledge (using growth rule)

Word map

Object Hub

Object Hub

Puzh SOM
Anticipated

P\nh SOM

Fig. 4 The bottom up and top down information flow while interacting with a green cylinder is shown in rows 1 and 2.
Contradiction between the robots anticipations and the real experience is also correlated with a difference in the shape map. This
leads to application of the growth rule, encoding the behavior of the cylinders in the pushing SOM. In few episodes of cumulative
interaction, the robot is able to learn and represent that color of objects do not matter, but shape does and cylinders roll much
faster than cubes when forces are exerted on them. An interesting aspect of the proposed framework is that it computationally
explains why top down and bottom up information flow must share computational/neural substrates. Such a shared neural basis
provides a computationally efficient means to directly compare and put into context the present experience with what has been
learnt in the past, and thereby triggering mechanisms related to consolidation.

down is shown in row 1-2 of Fig. 4. The flow of information
is indicated by arrows. Row 1 Bottom UP: To start with we
move from property specific maps to the object hub and
then to the Pushing SOM. As seen in column 5, the robot
anticipates that small cylinders may also move like small
cubes that are all it knows so far. But real experience with
cylinders reveals a different behavior, they roll much faster,
dis-placement/unit force is much higher as compared to
cubes. But we need to know ‘‘what caused this contradic-
tion’’. The trick is to go top down to reconstruct from
memory the past experience that resulted in the wrong
anticipation and compare it with the new experience (row
2). Note that color map is no longer activated top down,
due to assimilation in the past episode. Further directly
comparing top down with bottom up it is possible to infer
which property is causing the contradiction (shape map
shows change). Growth rule applies here because a change
in property causes contradiction be-tween anticipation
and observed behavior. As a result of application of
growth rule, there is now a new neuron in the Pushing
SOM that is coding for how cylinders move when force is
exerted on them. Appropriate connections between the
new winner in the push SOM and the object hub are
developed.

In sum, cumulatively interacting with different objects
and exploiting the dissonance or resonance between real

experience and anticipations, it becomes possible to learn
which properties are causally dominant for a particular task.
Applying the elimination and growth rule, the robot in few
episodes of interaction learnt that color of objects do not
matter, but shape does and cylinders roll much faster than
cubes when forces are exerted on them. Further, the for-
ward model anticipating how objects move naturally solves
the inverse problem of generating goal directed pushing of
any object to a target location as seen in Section ‘Distrib-
uted ‘‘property specific’’ organization of sensorimotor
information and the basic pushing forward/inverse model’.
The same mechanism can be used to eliminate any irrele-
vant property like the end effector used (stick, left hand,
right hand etc.), the starting and initial positions from
where the object is in fact pushed and so on. All of these
are not ‘‘casually dominant’’ as far as the task is concerned,
the learner can abstract all of this by the process of assim-
ilating what is experienced in the present with what was
experienced in the past.

Discussion

To wipe off a spider web on the top most corner of a room,
it does not matter if a red colored broom or yellow colored
broom or even a long stick is deployed. Any object that has
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the specific property ‘‘length’’ in this case will suffice. Sim-
ilarly, colors of objects do not affect the way they move
when pushed but shape and size do. At the same time, color
does play a causally dominant role in numerous other tasks
(for example, traffic rules). The article explores the issue of
how causally dominant properties relevant to different
tasks can be learnt through cumulative episodes of interac-
tions. Part of the problem is solved by taking guidance from
emerging results from brain science providing converging
evidence that conceptual information is organized in a *‘dis-
tributed fashion’’ in ‘‘property specific’’ cortical networks
that directly support perception and action and that were
active during learning. To supplement such property specific
organization, two learning rules namely elimination and
growth where proposed, that modulate the connectivity
between associated neural maps based on contradictions
between the robots top down anticipations and the bottom
up experience. A well investigated scenario from animal
cognition (Visalberghi & Tomasello, 1997) i.e. pushing was
used to illustrate the basic framework. Both how the robot
acquires the forward model i.e. anticipating how objects
move when forces are exerted and the inverse model i.e.
generating goal directed pushing actions with different
objects was described. Going beyond the acquisition of
the basic forward/inverse model, how causally dominant
properties can be abstracted within the proposed frame-
work was illustrated. An interesting aspect of the proposed
framework is that it computationally explains why top down
and bottom up information flow must share computational/
neural substrates. Several studies from functional imaging
related to organization of conceptual information in the
brain support that the same set of cortical networks are
known to be active both during real perception/action,
imagination and lexical processing. Our framework points
out such a shared basis provides a computationally efficient
means to directly compare and put into context the present
experience with what has been learnt in the past, and
thereby triggering mechanisms related to consolidation.
Further, several nonhuman primates are also known to
exploit implicit properties in novel objects to realize other-
wise unrealizable goals. A classic example is of the new Cal-
edonian crow Betty that based on her past experience of
bending flexible pipe cleaners a year back, fashioned a hook
out of a piece of wire to pull her dinner basket trapped in a
transparent vertical tube (Weir et al., 2002). In this con-
text, the implicit advantage of the proposed architecture
is that learnt ‘‘property-action’’ relations can be effort-
lessly generalized to a domain of objects for which the
robot need not have any past experience/learning but nev-
ertheless share the ‘‘property’’. This might explain the rea-
soning of Betty (Meyer & Damasio, 2009) when she used the
flexible piece of wire to fashion a hook, recalling the con-
text relevant past experience she had a year ago. In gen-
eral, further work in this direction has the potential to
provide a bio inspired and embodied framework for reason-
ing by analogy (attributing causality to a novel class of
objects based on what has been learnt and experienced in
the past). At the same time, learning and anticipation goes
hand in hand (and continuously in life time of the learner):

more experience driving better anticipation and inconsis-
tencies in reasoning driving new learning.
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